#### Groundwater Governance in the Arab World: Taking Stock and Addressing the Challenges

International Water Management Institute (IWMI)

Funded by USAID

Research partners: INRGREF (Tunisia), Beirut Arab University (Lebanon), International Center for Biosaline Agriculture (UAE), The University of Jordan (Jordan), LISODE (France)





### Introduction





#### Challenges affecting groundwater in the Arab world

- Groundwater essential for domestic and industrial supply, especially in rural areas
- Irrigation systems based on surface water are receiving less water (competition with cities and climate change), and need to complement with groundwater
- Agriculture consumes 85 percent of water in the region, but it remains a strategic resources for rural livelihood
- Agricultural development in desert areas based on (often deep) groundwater as a profitable venture (and/or subsidized by the state)
- Agricultural policies often disconnected from water realities, and water/agricultural ministries have inconsistent policies (if not antagonistic)
- Groundwater quality degradation (salinity and contamination from agriculture and urban areas)
- Transboundary aquifers





#### Project timeline

Oman

Yemen



# Main objectives of the project Review how groundwater abstraction is dealt with at the world level, with a focus on the MENA region (to feed the project reflection and process) Analyze in details the groundwater policy process story in 6 selected countries (to understand how we got there) Inject new perspectives in the on-going policy process in Tunisia, Lebanon, Jordan

- Study 3 problem aquifers in details and analyze differences between formal policies dynamics on the ground
- ✓ Conduct 'local dialogues' to foster social learning and interactions between national and local scales
- ✓ Prepare 'White books' for each aquifer, with recommendations and ideas for addressing groundwater overdraft

#### Programme of the workshop

#### D1 Morning

\*Introduction of participants \*Elements on the Knowledge base (3 parts)

#### Afternoon

\*Role game around a (virtual) aquifer

#### D2 Field visit

#### D3

Morning \*3 case studies: challenges from the group Afternoon \*Exploring the concept of 'co-management'

\*Feedback





- \*Presentation of the West delta PPP (Dr Safwat)
- \*Visit of Shorouq farm
- \*Discussion on land expansion/ water governance in Wadi Natrun
- \*Visit of a cooperative of small investors in West Delta area

#### This morning's presentations and discussions in three parts

- 1. Aquifers are very different 'beasts'
- 2. Aquifers are not (or rarely) an additional stock of water
- 3. Groundwater use schemes are also very different
  - 1. Who should regulate water use? The state!
  - 2. Who should regulate water use? The users!
    - 1. Co-management by the state and users
    - 2. Three examples









#### **1a. Large alluvial inner plains**



#### \* Internal

Beqaa (Lebanon) Ghab (Syria) Jordan valley Kairouan plain (Tunisia) Tadla (Morocco)



#### **1.b** Alluvial/sedimentary plains and deltas



#### \* Coastal

Nile delta Cap Bon (Tunisia) Gharb (Morocco)

#### South Lebanon (Sour)

Superficial clay layer (Nile, Beqaa, etc) Little or no transmissivity



#### **1. Large alluvial plains and deltas**



- Recharged by flood and rainfall (and irrigation)
- Recharged by irrigation (and river)

2. Sedimentary plateau/basins (limestone, sandstone, gravels, etc)



The river system drains the soil

Deep (fossil) aquifers as a special case La Mancha (Spain)





4. Karst aquifers







#### **Winners**

 New users of groundwater

#### Losers

- Spring (and their users)
- Qanat (and their users)
- GW-fed vegetation
- Baseflow recharge (and its users)
- Environment (wetland, etc)
- Existing well users (deepen, pumping costs)
- Future users (decrease in stocks)

| New users of groundwater | Spring and their users)                                                                                                                                                 |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •<br>•<br>•<br>•         | GW-fed version<br>Basefor recharge (and its users)<br>Environment (wetland, etc)<br>Existing well users (deepen,<br>pumping costs)<br>Future users (decrease in stocks) |

Only in this (sad) case, can we compare recharge and abstraction meaningfully

#### **Aquifers**

are not an additional stock of water waiting to be used when surface water is fully used

#### they are

- masses of water
- fed by recharge and
- flowing
- slowly and invisibly
- to outlets
  - Sea
  - Rivers
  - Springs
  - Wetlands

If we pump part of it, we *decrease* the outflow in quantity (and often quality)

|    |                 | Return flows affected<br>by pumping    | Users/functions<br>affected       |
|----|-----------------|----------------------------------------|-----------------------------------|
| 1a |                 | Flow to the sea                        | Well users themselves             |
| 1b | Ganges (India)  | Baseflow to river and wetlands         | Downstream users<br>in dry season |
| 2  | Beauce (France) | Baseflow to river springs and wetlands | Environment and downstream users  |
| 3  |                 | Baseflow to river or other outlets     | Downstream users                  |
| 4  |                 | The springs                            | Spring users                      |

#### In general there is no such thing as "safe yield"

#### understood as

"the volume we can 'safely' pump without affecting anyone or the environment"

The « safe yield » is the level of pumping for which what is lost is considered 'acceptable', compared with what is gained

The assessment depends on **who** does it and with which criteria (the state, existing users, Green NGOs, etc...)!!

Therefore « *how much we can/should pump* » is a political question (that concerns the society)





Small groundwater user in Bangladesh

Small groundwater user in Egypt

Individual shallow wells



Traditional groundwater lifting in India





 $\mathbf{O}$ 

Individual deep wells

Deep borehole owner in Texas

Small/large farmers in Egypt



## A typology of groundwater schemes

#### A very rough well typology - ownership



Type of management – what will it be: Public or Private?









#### Typical types of wells



